Remarks on Rational Vector Fields on $\mathbb {C}\mathbb {P}^{1}$

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Some Remarks on Indices of Holomorphic Vector Fields

One can associate several residue-type indices to a singular point of a two-dimensional holomorphic vector field. Some of these indices depend also on the choice of a separatrix at the singular point. We establish some relations between them, especially when the singular point is a generalized curve and the separatrix is the maximal one. These local results have global consequences, for example...

متن کامل

Concurrent vector fields on Finsler spaces

In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fields. We also prove that an L-reducible Finsler metric admitting a concurrent vector field reduces to a Landsberg metric.In this paper, we prove that a non-Riemannian isotropic Berwald metric or a non-Riemannian (α,β) -metric admits no concurrent vector fi...

متن کامل

The Space of Rational Maps on P1

The set of morphisms : P 1 ! P 1 of degree d is parametrized by an aane open subset Rat d of P 2d+1. We consider the action of SL 2 on Rat d induced by the conjugation action of SL 2 on rational maps; that is, f 2 SL 2 acts on via f = f ?1 f. The quotient space M d = Rat d =SL 2 arises very naturally in the study of discrete dynamical systems on P 1. We prove that M d exists as an aane integral...

متن کامل

Two remarks on differential fields

We make two observations concerning differential fields. The first is a model-theoretic proof of the existence and uniqueness of a PicardVessiot extension for an iterative linear differential equation (in positive characteristic) answering a question of Hrushovski. The second observation is that definable sets of finite Morley rank in differentially closed fields of characteristic zero are (pos...

متن کامل

Some Remarks on Almost Rational Torsion Points

For a commutative algebraic group G over a perfect field k, Ribet defined the set of almost rational torsion points G tors,k of G over k. For positive integers d, g, we show there is an integer Ud,g such that for all tori T of dimension at most d over number fields of degree at most g, T ar tors,k ⊆ T [Ud,g]. We show the corresponding result for abelian varieties with complex multiplication, an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Dynamical and Control Systems

سال: 2020

ISSN: 1079-2724,1573-8698

DOI: 10.1007/s10883-020-09502-5